
3: The delta rule

Kevin Gurney

Dept. Human Sciences, Brunel University

Uxbridge, Middx. UK

1 Generating input vectors for Neural Nets

In order to make the potential applications discussed subsequently more concrete, we shall

consider the example of how image information may be captured and input to a network.

Suppose we have a TV camera (monochrome for simplicity) which is viewing a picture that is

to be used in training. The output from this is a picture where each point is represented by

a continuously variable voltage (analogue quantity) so that shades of grey may be encoded

accurately. For a perceptron, however, we require a set of Binary values (`1', `0'). The

conversion process is done by dividing the picture into a grid of picture elements or pixels

each of which is allowed to take only one of two values - black or white. To �nd the value

for each pixel, the average value of the image in the pixel area is found and then thresholded

to determine whether it is white or black. We now make the correspondence white = `1', say

and black = `0'. This array of Boolean quantities may now be stored in a special purpose

computer memory or framestore. Typically the pixel grid may be 512 by 512 giving over 1/4

million pixels. Thus, the pattern space will have dimension 1/4 million. This is often reduced

to make things more manageable.

2 Using TLUs and perceptrons as classi�ers

Using the perceptron training algorithm, we may now use a perceptron to classify two linearly

separable classes A and B. Examples from these classes may have been obtained, for example,

by capturing images in a framestore; there may be two classes of faces, or we want to separate

handwritten characters into numerals and letters.

1



Neural Nets: 3 2

A A
A

A A A

B
B

B
B

B

B

A/B classi�cation

Suppose now there are 4 classes A, B, C, D and that they are separable by two planes

in pattern space

D D

D
A

A A A

BC C
C

C

C C
B

B

B

pattern space for A B C D

That is the two classes (A,B) (C,D) are linearly separable, as too are the classes (A,D)

and (B,C).



Neural Nets: 3 3

We may now train two units (with outputs y1; y2) to perform these two classi�cations

1 0

y1

y2

(A B) (C D)

(A D) (B C)

y1 y2 classi�cation

This gives a table encoding the original 4 classes

1

1

1 1

0

0 0

0

y1 y2 Class

C

D

B

A

y1 y2 coding for A B C D

The output of the two units may now be decoded by four 2-input TLUs to give the

desired responses

A B C D

Final classification

2 layer net giving A B C D classi�cation

These output units are not trained; each one is assigned weights required to signal a `1'

when its class code appears at its inputs. For example, output unit `A' is the logic AND gate

given as an example at the beginning of lecture 2.

Notice that the grouping (A,C) (D,B) would not have worked, since these are not linearly

separable, and other arrangements of the four classes in pattern space will require a di�erent

set of groupings. There were therefore two pieces of information required in order to train

the two units.

1. The four classes may separated by 2-hyperplanes

2. (A,B) was linearly separable from (C,D) and (A,D) was linearly separable from (B,C).



Neural Nets: 3 4

It would be more satisfactory if we could dispense with 2) and train the entire 2-layer

architecture, shown above, as a whole ab initio. The less knowledge we have to glean by

ourselves, the more useful a network is going to be. In order to do this, it is necessary to

introduce a new training algorithm based on a slightly di�erent approach which obviates the

need to know the nature of the nodes' hyperplanes.

3 Minimising an error: the delta rule

3.1 Finding the minimum of a function: gradient descent

Suppose y is some function of x (y depends on x or y = y(x)) but we don't know the exact

form of this function. Further, suppose we wish to �nd the position (x-coordinate) of the

minimum value of the function and we can �nd the slope (rate of change of y) at any point.

The slope is just �y=�x in the diagram.

P

∆x 

∆y

slope = 
∆x

∆y


y

x

y = y(x) and slope

The slope of a function at any point is the gradient (cf hill gradients) of the tangent to

the curve at the point. If �x is small, then �y is almost the same as the change �y in the

function y, when the change �x is made in x.

P

∆x 

∆y
δy

small changes



Neural Nets: 3 5

That is

�y � �y =
�y

�x
�x (1)

so that

�y � slope��x (2)

Now put

�x = ��� slope (3)

where � > 0 and is small enough to ensure �y � �y then

�y � ��(slope)2 (4)

That is �y < 0 and we have `travelled down' the curve towards the minimal point. If

we keep repeating steps like (4) iteratively, then we should approach the value of x associated

with the function minimum. This technique is called gradient descent. How can this be used

to train networks?

3.2 gradient descent on an error

The idea is to calculate an error each time the net is presented with a training vector (given

that we have supervised learning where there is a target) and to perform a gradient descent

on the error considered as function of the weights. There will be a gradient or slope for each

weight. Thus, we �nd the weights which give the minimal error. The situation is as follows.

E

w

desired
weights

gradient descent - E vs w

Formally, for each pattern p, we assign an error Ep which is a function of the weights;

that is p = Ep(w1; w2; : : : ; wn). Typically this is de�ned by the square di�erence between the

output and the target. Thus (for a single node)

Ep =
1

2
(t � y)2 (5)

Where we regard y as a function of the weights. The total error E, is then just the sum

of the pattern errors



Neural Nets: 3 6

E =
X

p

Ep (6)

Now, in order to perform gradient descent, the error must be a continuous function of

the weights and there must be a well de�ned gradient at each point. With TLUs, however,

this is not the case; although the activation is a continuous function of the weights, the output

changes abruptly as the activation passes throught the threshold value.

One way to remedy this is to train on the activation itself rather than the output.

This technique is usually ascribed to Widrow and Ho� (Widrow and Ho�, 1960) who trained

TLUs which had had their outputs labelled -1, 1 instead of 0, 1. These units they called

Adaptive Linear Elements or ADALINEs. For a description of their techniques see (Widrow

and Stearns, 1985; Widrow et al., 1987). The learning rule based on gradient decsent with

this type of node is, therefore, sometimes known as the Widrow Ho� rule, but more usually

now, as the delta rule.

We must still supply a target which is the activation the node is supposed to give in

response to the training pattern. Recall (lecture 2) that, if the threshold of a TLU is treated

as a weight, the condition for classifying as a `1' was that the activation, should be greater

(or equal to) zero. Conversely for a '0' to be output we require the activation to be less than

zero. We may therefore choose, as our target activations for the two classes, any two numbers

of opposite sign. It is convenient to choose the set f�1; 1g.

The learning rule may now be obtained by �nding the slope of the error in (5) with

respect to (`wrt') each of the weights, but using activation a rather than output y. That is,

for the delta rule with TLUS

Ep =
1

2
(t � a)2 (7)

It may be shown (use of `function-of-a-function' in calculus) that the slope of Ep with

respect to wj is just �(t � a)xj. The learning rule (delta rule) is now de�ned by making a

change in the weight �wj in line with (3)

�wj = ��� (slope of Ep wrt wj)

= �(t � a)xj (8)

This rule may incorporated into a training algorithm similar to the one given in lecture

2. However, the error will never be exactly zero and so the possibility of `do nothing' given

there, will never arise with the delta rule - there will always be some update to the weights.

The term �(t � a) is sometimes know as the `delta' (or �).

An example of this rule is provided below in which we train the same TLU as used in

the Perceptron example of lecture 2 [initial weights (0, 0.4) threshold 0.3, learn rate 0.25].



Neural Nets: 3 7

v w1 w2 � x1 x2 a� � t � �w1 �w2 �� E

1 0.00 0.40 0.30 0 0 -0.30 -1.00 -0.17 -0.00 -0.00 0.17 0.24

2 0.00 0.40 0.48 0 1 -0.08 -1.00 -0.23 -0.00 -0.23 0.23 0.43

3 0.00 0.17 0.71 1 0 -0.71 -1.00 -0.07 -0.07 -0.00 0.07 0.04

4 -0.07 0.17 0.78 1 1 -0.68 1.00 0.42 0.42 0.42 -0.42 1.42

1 0.35 0.59 0.36 0 0 -0.36 -1.00 -0.16 -0.00 -0.00 0.16 0.21

2 0.35 0.59 0.52 0 1 0.07 -1.00 -0.27 -0.00 -0.27 0.27 0.57

3 0.35 0.32 0.79 1 0 -0.44 -1.00 -0.14 -0.14 -0.00 0.14 0.16

4 0.21 0.32 0.93 1 1 -0.40 1.00 0.35 0.35 0.35 -0.35 0.98

1 0.56 0.67 0.58 0 0 -0.58 -1.00 -0.11 -0.00 -0.00 0.11 0.09

2 0.56 0.67 0.68 0 1 -0.01 -1.00 -0.25 -0.00 -0.25 0.25 0.49

3 0.56 0.42 0.93 1 0 -0.37 -1.00 -0.16 -0.16 -0.00 0.16 0.20

4 0.40 0.42 1.09 1 1 -0.26 1.00 0.32 0.32 0.32 -0.32 0.80

1 0.72 0.74 0.77 0 0 -0.77 -1.00 -0.06 -0.00 -0.00 0.06 0.03

2 0.72 0.74 0.83 0 1 -0.09 -1.00 -0.23 -0.00 -0.23 0.23 0.42

3 0.72 0.51 1.06 1 0 -0.34 -1.00 -0.16 -0.16 -0.00 0.16 0.22

4 0.55 0.51 1.22 1 1 -0.16 1.00 0.29 0.29 0.29 -0.29 0.67

1 0.84 0.80 0.93 0 0 -0.93 -1.00 -0.02 -0.00 -0.00 0.02 0.00

2 0.84 0.80 0.95 0 1 -0.15 -1.00 -0.21 -0.00 -0.21 0.21 0.36

3 0.84 0.59 1.16 1 0 -0.32 -1.00 -0.17 -0.17 -0.00 0.17 0.23

4 0.67 0.59 1.33 1 1 -0.07 1.00 0.27 0.27 0.27 -0.27 0.57

1 0.94 0.86 1.06 0 0 -1.06 -1.00 0.02 0.00 0.00 -0.02 0.00

2 0.94 0.86 1.05 0 1 -0.19 -1.00 -0.20 -0.00 -0.20 0.20 0.33

3 0.94 0.65 1.25 1 0 -0.31 -1.00 -0.17 -0.17 -0.00 0.17 0.24

4 0.77 0.65 1.42 1 1 -0.00 1.00 0.25 0.25 0.25 -0.25 0.50

1 1.02 0.90 1.17 0 0 -1.17 -1.00 0.04 0.00 0.00 -0.04 0.01

2 1.02 0.90 1.13 0 1 -0.22 -1.00 -0.19 -0.00 -0.19 0.19 0.30

3 1.02 0.71 1.32 1 0 -0.31 -1.00 -0.17 -0.17 -0.00 0.17 0.24

4 0.84 0.71 1.50 1 1 0.06 1.00 0.24 0.24 0.24 -0.24 0.44

First `correct pass' through the training set. The following training decreases the error but does

not change the classi�cation after thresholding the activationAfter this the

v w1 w2 � x1 x2 a� � t � �w1 �w2 �� E

1 1.08 0.95 1.26 0 0 -1.26 -1.00 0.07 0.00 0.00 -0.07 0.03

2 1.08 0.95 1.20 0 1 -0.25 -1.00 -0.19 -0.00 -0.19 0.19 0.28

3 1.08 0.76 1.38 1 0 -0.30 -1.00 -0.17 -0.17 -0.00 0.17 0.24

4 0.91 0.76 1.56 1 1 0.11 1.00 0.22 0.22 0.22 -0.22 0.40

1 1.13 0.98 1.33 0 0 -1.33 -1.00 0.08 0.00 0.00 -0.08 0.06

2 1.13 0.98 1.25 0 1 -0.27 -1.00 -0.18 -0.00 -0.18 0.18 0.27

3 1.13 0.80 1.43 1 0 -0.30 -1.00 -0.17 -0.17 -0.00 0.17 0.24

4 0.95 0.80 1.61 1 1 0.15 1.00 0.21 0.21 0.21 -0.21 0.36

Examination of (8) shows that it looks formally the same as the perceptron rule [lecture

2]. However, the latter uses the output for comparison with a target, while the delta rule

uses the activation. They were also obtained from di�erent theoretical starting points. The

perceptron rule was derived by a consideration of hyperplane manipulation while the delta

rule is given by gradient descent on the square error.



Neural Nets: 3 8

It was noted above that the discontinuity in error for TLUs could be traced to the

discontinuous output function. With semilinear units this is not the case since the sigmoid

is a smooth function. Now we may use the error in (5) (using the output rather than the

activation) but have to include an extra term which is related to the slope of the sigmoid;

that is, the derivative �0(a). So for semilinear units the delta rule becomes

�wj = ��0(a)(t � y)xj (9)

It may be shown that

�0(a) �
d�(a)

da
=

1

�
�(a)(1� �(a)) (10)

Unlike the perceptron rule, it is possible to generalise the delta rule to train more than

a single layer at once. It turns out to be possible to calculate the slope of the error gradient

at intermediate network layers. This was our original goal and is ful�lled in the so-called

Backpropagation algorithm or generalised delta rule to be dealt with in the next lecture.

References

Widrow, B. and Ho� (1960). Adaptive switching circuits. In 1960 IRE WESCON Convention

Record, pages 96 { 104. IRE.

Reprinted in Neurocomputing - Foundations of Research eds. Anderson and Rosenfeld.

This is a third party report on Widrow's paper. It is largely of historic interest only.

Widrow, B. and Stearns, S. (1985). Adaptive Signal Processing. Prentice-Hall.

Is in the library short loan section. This is a book on signal processing (Widrow is an

engineer) but contains an extensive analysis of gradient descent. The ADALINE stu� is

in the �rst half of the book.

Widrow, B., Winter, and Baxter (1987). Learning phenomena in layered neural networks. In

1st Int. Conference Neural Nets, San Diego, volume 2, page 411. I have this.This gives

a nice description of training linear units and the ideas of linear separability.


