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Abstract

We are interested in solving real-world planning prob-
lems and, to that end, argue for the use of domain
knowledge in planning. We believe that the field
must develop methods capable of using rich knowl-
edge models in order to make planning tools useful for
complex problems. We discuss the suitability of cur-
rent planning paradigms for solving these problems.
In particular, we compare knowledge-rich approaches
such as hierarchical task network (HTN) planning to
minimal-knowledge methods such as STRIPS-based
planners and disjunctive planners (DPs). We argue
that the former methods have advantages such as scal-
ability, expressiveness, continuous plan modification
during execution, and the ability to interact with hu-
mans. However, these planners also have limitations,
such as requiring complete domain models and failing
to model uncertainty, that often make them inadequate
for real-world problems.
In this paper, we define the termsknowledge-based
(KB) and primitive-action (PA) planning, and argue
for the use of KB planning as a paradigm for solving
real-world problems. We next summarize some of the
characteristics of real-world problems that we are in-
terested in addressing. Several current real-world plan-
ning applications are described, focusing on the ways
in which knowledge is brought to bear on the planning
problem. We describe some existing KB approaches,
and then discuss additional capabilities, beyond those
available in existing systems, that are needed. Finally,
we draw an analogy from the current focus of the plan-
ning community on disjunctive planners to the experi-
ences of the machine learning community over the past
decade.

Keywords: Planning, execution monitoring, knowledge-
based planning, hierarchical task network

Introduction
We are interested in solving real-world planning problems,
and believe that doing so will require techniques that are
more expressive and provide a wider range of capabilities
than current planning systems. Real-world problems have
been found to require more expressive representations and
capabilities than are needed for the “standard” set of bench-
mark planning problems (blocks world, Towers of Hanoi,

simplified logistics, and the like) or for the problems used
in the 1998 and 2000 Artificial Intelligence Planning and
Scheduling Conference planning competitions (McDermott
2000; Long 2000; Bacchuset al. 2000).

Past research in AI planning can be roughly divided into
two camps: systems that take a minimalist approach to do-
main knowledge, and systems that focus on leveraging as
much domain knowledge as possible. Techniques in the
first set generally restrict themselves to domain models con-
sisting of STRIPS-style descriptions of primitive actions.
We refer to these methods in the first set asprimitive-action
(PA) planning techniques, since they construct plans from
descriptions of the actions that can appear in the final plan.1

A currently popular form of primitive-action planning is
disjunctive planning, which uses primitive action descrip-
tions to encode and solve propositional representations of
planning problems. (A recent survey of current directions
in AI planning (Weld 1999) focuses almost exclusively on
this style of planning.)

Techniques in the second set are based on a philosophy of
using whatever domain knowledge is available to solve the
planning problem. These systems are characterized by the
use of multiple types of domain knowledge and complex
domain models to support their reasoning processes. This
knowledge may include task and goal structures, additional
constraints, search control techniques, and interacting with
humans when necessary to make use of their expertise. We
refer to these techniques asknowledge-based(KB) plan-
ning methods.

In this paper, we argue that in order to scale up to com-
plex problems, multiple types of knowledge must be explic-
itly encoded in understandable structures, and that planning
algorithms must be able to use this explicit knowledge ef-

1The term “domain-independent planning” has sometimes
been used in the literature to describe these systems, but this term
is a misnomer, since the action descriptions do in fact constitute
a form of domain knowledge. In this paper, we use the term
“domain-independent” to refer to any planner that is designed to
be generically applicable to any domain encoded in the proper
form. Using this definition, KB planning methods that operate
on explicit domain descriptions—as opposed to systems that are
hardwired for particular domains—are as “domain-independent”
as PA planning systems.



fectively.
One possible approach to achieving this knowledge en-

coding would be to augment primitive-action planners with
additional knowledge. Indeed, researchers have begun
to investigate how these systems can be augmented with
domain-specific, hand-encoded control rules (see sidebar).
However, only certain types of knowledge can be captured
in these rules, and they are difficult and time-consuming
to construct. The result is that this approach to encoding
knowledge is not scalable to large, complex problems. It
seems unlikely that hand-coded control rules will be a suf-
ficient approach to knowledge modeling for the types of
problems that arise in the real world.

KB planning methods have limitations as well. On the
one hand, current KB methods are not knowledge-based
enough: as we will discuss later in the paper, they do not
incorporate many types of knowledge that are important
for real-world problems. On the other hand, they aretoo
knowledge-based for some problems: the inference entailed
by modeling many aspects of the planning problem can be
computationally expensive, with the result that KB meth-
ods may not be the most efficient approach to solving cer-
tain types of constraint satisfaction subproblems within a
larger planning problem. Therefore, we believe that solving
large, complex problems will require both the development
of new KB methods and the integration of primitive-action
methods with these new techniques.

KB planning and primitive-action planning represent two
ends of a continuum: a planner may be more or less
knowledge-based, depending on the range of knowledge it
uses, and how effectively it uses it. Integrated systems may
ultimately provide the best of both worlds. However, we
argue that KB methods can solve problems that primitive-
action methods cannot, because of the greater expressivity
and more natural representations of KB planning.

The remainder of the paper is organized as follows.
We first describe some common characteristics of real-
world planning problems that are not solvable by current
primitive-action methods, and we argue that these methods
are unlikely to extend to these problems. We describe some
real-world planning problems that have been addressed by
current KB planners. We then discuss how multiple types
of knowledge and capabilities are exploited in existing KB
planners. However, current KB techniques represent only a
small step in the direction of the level of KB planning that
we envision. We next argue that achieving goal-directed be-
havior in a complex, dynamic world will require reasoning
about the consequences of future actions. This is turn will
entail the use of much more knowledge and richer knowl-
edge models than those used in today’s KB planners. We
discuss forms of knowledge that current KB planners do not
use, and give some examples of problems that today’s plan-
ners are not able to solve. Finally, we draw some lessons
from the history of the machine learning research commu-
nity that are analogous to the current trends in the planning
community.

Characteristics of
Real-World Planning Problems

Real-world problems have been found by many researchers
to require more expressive representations and capabilities
than those provided by current AI planning systems. Chien
et al. (1996) conclude from their experience with multiple
NASA applications that “current plan representations are
impoverished.” They discuss the requirements of an oper-
ational context in which users must interact with the sys-
tem, and must be able to understand and modify the plans
produced by the planner. Our experience with military and
oil spill planning applications supports these conclusions.
Here we describe some of the specific capabilities that are
needed to solve real-world problems: numerical reasoning,
concurrent actions, context-dependent effects, interaction
with users, execution monitoring, replanning, and scalabil-
ity.

Reasoning with numbers is essential in every realistic
domain that we have studied. Common needs for num-
bers are time, sharable resources having a specific capac-
ity, continuous resources available in limited quantities, and
goals of accumulation. An example of the latter is the
goal of obtaining a certain quantity of resource that must
be assembled from smaller aggregations, such as getting
enough boom from several warehouses to contain an oil
spill, or enough soldiers or equipment for a military opera-
tion. In practice, disjunctive planners (DPs) have difficulty
handling problems involving reasoning about numbers.2 In
most existing non-HTN AI planners, the need for numerical
reasoning is reduced by assuming that sharable resources
have infinite capacity, and that continuous resources are un-
limited (Srivastava & Kambhampati 1999).

Realistic domains may have dozens of (perhaps neces-
sarily) parallel activities, as activities of various agents are
coordinated. Parallelism can cause computational problems
for disjunctiveplanners, and some systems produce only se-
quential plans.

Realistic domains often have numerous context-
dependent effects, which can cause an exponential
explosion in the number of STRIPS operators needed. This
problem is being addressed to some extent in disjunctive
planners. Extensions to the Graphplan algorithm to handle
conditional effects are given in (Kambhampati, Parker, &
Lambrecht 1997) and (Gu´eré & Alami 1999), but applica-
tions of Graphplan are already limited by computational
efficiency and neither paper discusses the time or space
complexity of the algorithms. Other approaches have also
been tried, perhaps the most promising being factored
expansion, in which an action with conditional effects is
split into new actions called “components,” one foreach
conditional effect. This approach appears to outperform

2While simple, finite arithmetic could be added to DPs, the
combinatorics would generally explode. Another approach is
given by Wolfman and Weld (1999), who describe a system that
combines SATPLAN with an incremental Simplex algorithm for
solving linear inequalities—a useful extension, but combinatorics
allow the solution of only toy problems.



a straightforward splitting ofeach action into (a possibly
exponential number of) STRIPS operators, at least on large
problems. The cost is added complexity in the planning
algorithms involving “tricky” extensions (Anderson, Smith,
& Weld 1998).

Interacting with people is a critical aspect of real-world
planning. Realistic problems are embedded in the world,
and generally do not have precisely defined boundaries or
evaluation functions. Thus, most interesting planning prob-
lems will be difficult or impossible to model fully. For ex-
ample, criteria for plan evaluation often cannot be quanti-
fied, such as when the political consequences of a military
or media action are crucial. It is also hard to specify when a
situation warrants breaking rules or ignoring certain infor-
mation, yet such situations are common in real life. In such
cases, a human user must be able to guide the planner and
evaluate the plans produced, allowing the planning system
to take advantage of the user’s expertise.

In the real world, the goal of planning is not simply to
build the plan, but to use it to control actions in the world.
Therefore, realistic planning systems must support execu-
tion monitoring and continuous plan modification during
execution. Figure 1 shows a possible architecture for a sys-
tem incorporating both planning and execution. The inten-
tion is not to promote this architecture, but to show some
of the added complication introduced by executing a plan.
The planner and executor have specialized knowledge bases
to support their respective roles, and must also share com-
mon ontologies, models of actions, and knowledge about
the world. The executor requires a rich model of the re-
lationships among tasks in the plan and of possible out-
comes and contingencies. The executor generally operates
at a faster tempo than the planner and attempts to provide
effective responses to changing conditions, which requires
rapid replanning and possibly responding to time-critical
situations without invoking the planner (perhaps using pro-
cedures from the monitoring knowledge).

The Plan Initializer/Synchronizer in Figure 1 prepares
plans for execution. This module may generate plan-
specific monitors to efficiently monitor conditions over cer-
tain intervals. It must also synchronize the transfer of con-
trol from the original plan to a newly modified version of
the plan, even though the original plan has continued execu-
tion during the replanning process. In many domains, large
quantities of information about the world state (for exam-
ple, from sensor networks) are constantly arriving, but only
small portions may affect the current plan. The Informa-
tion Manager filters the incoming data, passing the relevant
parts to the Execution Manager.

Because there is no dependency structure in DP plans,
monitoring them is difficult. In addition, the disjunctive
planning approach is very brittle in the face of changing
problem requirements, and any change in the environment
may result in the planning system having to start from
scratch. Because KB planners record dependencies and
goal structure, KB replanning techniques can often modify
an executing plan in the face of new requirements (Myers
1999; Wilkinset al. 1995).

Finally, realistic problems involve enormous search
spaces, so scalability is essential. Vast strides have been
made in the size of problems solved by disjunctive plan-
ners, such as solving instances with 1016 to 1019 configura-
tions. However, these large disjunctive planning problems
are still representations of toy problems, such as a logistics
problem with 9 packages, 5 trucks, 2 airplanes, and 15 loca-
tions (Kautz & Selman 1998). Simply increasing the num-
ber of locations to a realistic number will make even these
toy problems unsolvable. In contrast, HTN planners can
generate plans in domains with thousands of objects and
hundreds or thousands of actions (Wilkins & Myers 1998;
Wilkins & Desimone 1994).

Real-World Applications
We describe several existing planning applications that in-
clude many of the characteristics of hard real-world prob-
lems that we are interested in exploring. These applications
use a variety of knowledge-based planning techniques, and
represent a starting point for research into real-world plan-
ning methods. They also highlight the need for further work
in many of the areas we have discussed. Another survey of
real-world planning applications can be found in (Knoblock
1996).

Unlike toy problems, real-world problems generally can-
not be completely modeled, particularly when plans are
executed in the real world. Therefore, validating the cor-
rectness of a planner raises many challenging issues. The
NASA domains described in this section have been fielded,
and the planners have been subjected to extensive validation
procedures. Generally, validation involves empirical tests
for carefully selected test cases (against simulators, test har-
nesses, or the real world). Results may be checked automat-
ically against a set of correctness requirements that have
been carefully defined and validated by human experts. A
description of such testing and the issues involved can be
found in (Smith, Feather, & Muscettola 2000).

Oil-Spill Crisis Response Planning
Oil-spill incident response is a race against time, to contain
or remove oil before it damages the shore. Planning be-
gins by entering the specifics of a spill incident—location,
time of day, spill rate, and so on—and then forecasting (us-
ing legacy systems) the spill trajectory, considering the un-
certainty in its spreading caused by wind and waves. This
forecast determines which environmentally sensitive shore
sectors the oil will hit, and when.

The Spill Response Configuration System (SRCS) helps
the U.S. Coast Guard (USCG) estimate the adequacy of the
amounts and locations of cleanup equipment in its coastal
oil-spill incident response plans (Agosta & Wilkins 1996).
SRCS determines adequacy by building plans that meet a
range of spill scenarios and then evaluating the plans. Pre-
vious approaches used approximate rules to estimate equip-
ment needs. By automating the planning process, SRCS
enables users to plan and evaluate a range of detailed re-
sponses to a range of spill scenarios, enabling the USCG to
more accurately estimate its needs.
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The planner works from the spill-trajectory forecast, to-
gether with geographic information, such as the sectors into
which the region is divided and the USCG requirements for
protection of these areas. In addition, the planner works
with a database of the quantities and capabilities of avail-
able equipment and resources, which are often located over
a large geographical area with varying time and transporta-
tion costs.

SRCS integrates simulation, evaluation, map display, and
scheduling tools with SIPE–2. The planner, which uses a
knowledge base of oil-spill response HTN operators, and
the scheduler work interactively with the user to generate a
plan consisting of equipment deployment and employment
actions. The actions in this plan must satisfy constraints de-
termined by the projected oil dispersal pattern, equipment
cleanup capabilities and transport times, and environmen-
tal protection requirements. SRCS is intended to be used
for configuration planning—advance planning to prepare
for likely incidents—rather than for real-time planning as
an incident unfolds.

This application requires extensive use of metric (nu-
merical) goals, primarily resource and temporal reason-
ing. The temporal reasoning involves deadlines and con-
currency. One important use of resource reasoning is the
accumulation of a certain level of some resource at a cer-
tain place and time. An example is a goal to provide several
thousand feet of oil-containment boom to protect a sensitive
area. This goal must typically be met by transporting sev-
eral shipments of boom from different locations around the
state or country.

Most of the user’s interaction with SRCS is mediated by
the map interface, implemented in a commercial geograph-
ical information system. The user thus can immediately see
both the extent of the spill and where resources are em-
ployed at various times.

Plans are evaluated on the degree to which they achieve
the overall objective of cleaning up the spilled oil. In many
spills, much of the oil will escape, no matter how much
equipment is available, because of the difficulty of opera-
tions and speed of spread due to the weather. Furthermore,
for any spill, SRCS can generate many possible plans, and
users can partially or completely sacrifice a sector cleanup
goal if they believe equipment that would have been as-
signed to a sector better serves the overall goals by being
used elsewhere.

Because there are many feasible plans that vary widely in
their degree of success, SRCS includes an evaluation model
for finding good plans. The plan is used as an input to this
model, along with the projected flows determined by the
trajectory model. The evaluation model accounts for the
quantities of oil contained and removed ineach sector, for
each period. From this accounting, it can calculate mea-
sures of plan merit, such as the final fraction of oil removed
by the plan.

Space Applications
Several planning domain models have been developed by
NASA researchers3 for studying a range of space applica-
tions of AI planning systems. Three of these domains are
described here; they highlight the need for planning sys-
tems that can represent and reason about complex activities,
resources, and interactions.

DATA-CHASER DATA-CHASER flew aboard the space
shuttle Discovery on mission STS-85 as a Hitchhiker pay-
load with the International Extreme Ultraviolet Hitchhiker
Bridge (IEH-2) in August 1997 (Figure 2). This mission
used automated planning and scheduling techniques to de-
crease mission commanding effort by 80% while increasing
science return (i.e., efficiency of instrument utilization) by
40% (as compared to manual sequence generation) (Chien
et al.1999).

DATA-CHASER consisted of three co-aligned instru-
ments that collected data in the far and extreme ultraviolet
wavelengths. These instruments obtained images of the sun
that correlated solar activity with radiation flux, associating
this flux with individual active regions of the sun. The irra-
diance data could be sent to the ground system using low-
rate (available 90% of the time, at 1200 bps) or medium-
rate (available when scheduled, at 200 kbps) transmission.
The payload was capable of receiving commands sent from
the ground system when uplink was available. The DATA
module contained the science instruments themselves. The
CHASER module (Figure 3) contained the planning and
scheduling system that managed the shuttle resources in or-
der to accomplish the mission successfully.

Shuttle resources are shared by multiple missions, and
their availability is subject to change every 12 hours (the
frequency at which NASA changes shuttle flight plans).
These resources include access to uplink and downlink
channels and time windows when the instruments are al-
lowed to operate. In addition, DATA-CHASER had thermal
constraints that limited the duration of payload exposure
to the sun and environmental constraints that restricted the
state and activities of the payload when shuttle contamina-
tion events occurred. Therefore, DATA-CHASER’s planner
needed to interoperate with the shuttle flight plan to enforce
numerous resource constraints.

DATA-CHASER posed a challenge for automated
scheduling techniques because of its complex resource and
power management requirements. The scheduler needed to
identify an optimal data collection schedule, while adhering
to the resource constraints. In addition, scientists wanted to
be able to perform dynamic scheduling during the mission.
For example, the summary data might indicate the presence
of a solar flare. If this occurred, scientists could change
their requirements and goals, for example, raising the pri-
ority on certain instruments, or providing longer integration

3These descriptions were generously provided by Steve Chien
of NASA’s Jet Propulsion Lab; however, the authors take respon-
sibility for the final text. The NASAphotographs are used with
permission.



times. These new goals could require a different schedule
of activities.

Citizen Explorer The Citizen Explorer (CX-1) satellite
project is a small satellite built and operated by the Col-
orado Space Grant Consortium at the University of Col-
orado at Boulder, Colorado. CX-1 is scheduled to launch
as a secondary payload aboard a Delta-II launch vehicle
in November 2000. The science mission of CX-1 will fo-
cus on obtaining geographical coverage of ozone, aerosols,
and ultraviolet radiation measurements using both on-board
and ground-based science instruments. CX-1 mission op-
erations will include ground-based automated planning us-
ing the ASPEN KB planning system (Willis, Rabideau, &
Wilklow 1999).

CX-1 operations require managing resources such as
the spectrophotometer (Speck) science instrument, battery
power, solar array power and the solid-state disk. There are
also several data collection modes that must be scheduled
based on the spacecraft’s orbital location. A typical daily
CX-1 operations scenario includes Speck data collection,
engineering health and status data collection, data downlink
to operations ground stations and to participating schools,
command set uplink, updates to the on-board executive con-
trol database, and updates to ephemeris data. Interactions
between limited power availability and limited downlink
opportunities (due to ground station placement, orbital con-
straints, onboard memory limitations, and the transmission
power costs) make mission operations a complex optimiza-
tion problem.

Antarctic Mapping Mission The Modified Antarctic
Mapping Mission (MAMM) used RadarSAT, a Synthetic
Aperture Radar (SAR) satellite operated by the Canadian
Space Agency, to gather interferometry information cover-
ing the Antarctic continent from September to December
2000. The ASPEN automated planner (Chienet al. 2000)
was used to develop and verify the MAMM mission plan,
resulting in a reduction from one work year of planning ef-
fort in the first Antarctic Mapping Mission to around eight
work weeks for MAMM. The mission plan was executed
flawlessly aboard RadarSAT during the operation.

RadarSAT is in a 100-minutepolar orbit around the earth.
One mapping cycle, consisting of 356 orbits, takes about 24
days, and must end by positioning RadarSAT in the same
position and trajectory at at the start of the cycle. During
each of its three mapping cycles, RadarSAT collected im-
ages of the entire continent of Antarctica, with significant
redundancy around interesting regions, such as dynamic ar-
eas around the coastline and fast-moving ice flows. These
three sets of images were used to construct interferometry
data, which will allow scientists to determine the surface
flow of the continent.

The downlink scheduling problem was complex and
highly constrained. Five ground stations were used to
downlink information from RadarSAT. There are two meth-
ods of capturing an image: real-time, where the image is

captured and simultaneously downlinked to a receiving sta-
tion, and recorded, where the image is captured on the On-
Board Recorder (OBR). The OBR has a capacity of ap-
proximately 916 seconds. Data on the OBR must be down-
linked to a receiving station when RadarSAT is visible from
the station. Each ground station is only visible for down-
linking up to 15 minutes per orbit. The only station ca-
pable of receiving real-time downlinks from MAMM was
MacMurdo Ground Station, which is located in Antarctica.
Furthermore, the availability ofeach downlinking station
could change: for example, if MacMurdo was shut down
by weather, all imaging had to be recorded and downlinked
to other stations.

Many additional operational constraints complicated the
scheduling problem. For example, real-time imaging and
OBR downlink can occur simultaneously, but real-time
imaging and recording images to the OBR can not. The
SAR imager can be on for at most 32 minutes per orbit.
Each imaging activity has to be at least one minute long,
including the eight-second intervals before and after imag-
ing. In order to use the OBR, there is a 13-second spin-up
time and a 2.5-second spin-down time, although if two im-
ages occur less than 30 seconds apart, the OBR continues to
record. The OBR cannot play back until it has recorded all
916 seconds, and then it must play the entire tape back with
no pause. There are also delays associated with switch-
ing from recording to playback mode, connecting to and
disconnecting from a ground receiver, and calibrating this
connection between transmissions. In the final schedule,
there were approximately 819 imaging activities per cycle,
of which one-third were recorded and two-thirds were real
time.

The most challenging planning issue for MAMM was
to ensure that all of the images were captured within the
operational constraints, and that all of the data was down-
linked successfully, within the downlink constraints. Be-
cause the availability of resources could change during the
cycle, rapid replanning in the event of such changes was
critical.

Military Air Campaign Planning
In air campaign planning, a human planner is typically
given a set of high-level political and military goals (for
example, “Protect U.S. citizens and forces from hostile at-
tack”) and refines the goals that are attainable (wholly or
in part) by the employment of air power into more specific
goals. This process iterates until each goal is directly at-
tainable by the execution of a mission. A group of identical
aircraft acting in concert performs a mission. Each mis-
sion consists of a mission type, a time and place, a type of
aircraft, munitions, and the number of sorties required to
execute the mission. Thus, a mission might be expressed as
“Four F-15Cs to escort strike package P to target T on day
D+1.” Mission planning details such as flight path and al-
titude profile are at a lower level of granularity and may
be left until later in the planning process. Support mis-
sions, which include refueling and reconnaissance, must be
planned, as they must compete with combat missions for



resources such as aircraft and fuel.
There are often multiple ways to refine goals into sub-

goals. These refinements reflect the different strategies and
tactics that are available. Available options are constrained
by the situation, which includes local geography, the en-
emy’s characteristics and capabilities, restrictions imposed
by political authority, and the availability of aircraft, fuel,
crews, and other resources.

The Multiagent Planning Architecture (MPA) was used
to demonstrate automated planning capability within the
air campaign planning domain (Wilkins & Myers 1998).
This application starts with a high-level military objective,
“achieve air superiority,” and expands the plan down to the
level of individual missions and their support missions. The
planner works from a knowledge base of planning opera-
tors (encoded specifically for the planner), which encode
air campaign tactics and strategy for goals from achieving
air superiority down to mission-level goals. There are of-
ten multiple ways to refine goals into subgoals. Thus, the
HTN operators at multiple abstraction levels encode what it
means to “achieve air superiority,” a concept that would be
difficult to express in primitive-action planners.

The planner has access to an extensive knowledge base
of available assets (including aircraft and munitions), which
was downloaded from existing military databases. Each air-
craft has a dozen or more properties that affect its suitability
for missions, such as speed, range, crew requirements, and
munitions. Constraints on these properties appear in the
HTN operators. The planner also has access to the results
of the (human-conducted) intelligence analysis of the situa-
tion, which the planning operators use to focus the planner
on enemy strengths, weaknesses, and other salient aspects
of the situation.

The air campaign planning application, like oil-spill
response, requires extensive use of metric goals, such
as deadlines, resource usage, and resource accumulation.
Combat missions and their support missions must compete
for use of pooled resources such as fuel, aircraft, and mu-
nitions. Concurrency is important as dozens or hundreds
of missions must all take place at the same time. Capacity
analysis is used to determine the number of missions that a
given pool of resources can support.

Evaluation of plans in this domain is complex and has not
been automated. Some simple measures can be computed
such as whether deadlines are met, and what percentage of
desired targets are attacked given available resources. In
MPA, the Air Campaign Simulator (Cohen, Anderson, &
Westbrook 1996) from the University of Massachusetts pro-
vided many Monte Carlo simulations of plans, and the re-
sults were presented to the user through visualization tools.
Many variables could be viewed, including levels of de-
struction of the targets and attrition of assets for both friend
and foe. However, only humans can evaluate some of the
more complex effects such as political costs and benefits.

Using Knowledge in
Knowledge-Based Planning

We describe some of the uses made of domain knowledge
in current KB planners. These features may be candi-
dates for extending non-KB planners, and in some cases
such extensions are currently being explored. Kautz and
Selman (1998) identify three kinds of planning knowl-
edge: knowledge about the domain, knowledge about good
plans, and explicit search-control knowledge. KB planners
are also concerned with other types of knowledge, such
as knowledge about interacting with the user, knowledge
about a user’s preferences, and knowledge about plan re-
pair during execution (see the discussion of expressiveness
below).

KB Planning
Our intent is not to provide a comprehensive survey of KB
planning approaches in this paper, although they are some-
times ignored in other planning surveys (Weld 1999). In-
stead, we mention several examples of KB planners and
draw our examples of knowledge use from them. Hier-
archical task network (HTN) planning is the most studied
and well understood of the KB methods. The best-known
knowledge-intensive applications of HTN are SIPE–2 and
O-Plan.

Smith, Frank, and Jonsson (2000) have identified a com-
mon framework that is emerging from the NASA work:
the use of interval representations for actions and propo-
sitions, and constraint-satisfaction techniques for reasoning
about these intervals. They refer to this as the constraint-
based interval approach. More recent KB approaches in-
clude Ozone, Remote Agent Experiment Planner/Scheduler
(RAX-PS), and ASPEN. Each of these is described briefly
here.

Ozone (Smith, Lassila, & Becker 1996; Becker & Smith
2000), a planning and scheduling toolkit, is centered on a
knowledge-intensive modeling of the problem domain. A
model is specified in terms of basic types of entities, oper-
ations, resources, demands, and products. Ozone provides
knowledge-structuring primitives for each of these, includ-
ing several specialized resource classes. Operations can be
organized hierarchically to model processes at different lev-
els of detail.

ASPEN (2000) automates planning and scheduling for
space mission operations. It provides, among other capa-
bilities, an expressive constraint modeling language, a lan-
guage for representing plan preferences, constraint reason-
ing systems, and a graphical interface for visualizing plans
in mixed-initiative systems. These capabilities are used to
model many forms of knowledge, including spacecraft op-
erability constraints, flight rules, spacecraft hardware mod-
els, science experiment goals, and operations procedures.
High-level activities can be decomposed into lower-level
activities using ASPEN’s activity hierarchies.

RAX-PS (Jonssonet al. 2000) generates plans that could
be safely executed on the Deep Space One spacecraft. The
plans achieve high-level goals that are provided as inputs
to the planner, while satisfying resource constraints and



complex flight safety rules. As in ASPEN, large amounts
of knowledge are encoded about spacecraft resources, con-
straints, and procedures. RAX-PS also provides a rule lan-
guage for the search controller that can be used to help
avoid inefficient searches. RAX-PS incorporates special-
ized knowledge about the development of plan fragments
from “planning experts,” which are generally legacy soft-
ware systems or other specialized software.

SIPE–2 (Wilkins 1990; Wilkinset al.1995) is a domain-
independent HTN planner that models various types of do-
main knowledge. For example, SIPE–2 includes languages
to represent activities at multiple levels of abstraction (HTN
operators, also known as methods or schemas), knowledge
about a user’s preferences (Myers 1996) (which are ex-
pressed as advice to the planner), search-control knowl-
edge, and knowledge about plan repair during execution.
Example applications include containing oil spills (Agosta
& Wilkins 1996), planning air campaigns for the Air Force
(Wilkins & Myers 1998; Lee & Wilkins 1996), and joint
military operations planning (Wilkins & Desimone 1994).
In the latter applications, the domain knowledge includes
100 to 200 operators, around 500 objects with 15 to 20
properties per object (which are mentioned in constraints),
and a few thousand initial predicate instances. Plans can
include up to several hundred actions—several thousand if
all abstraction levels are counted—usually having numer-
ous parallel activities.

O-Plan (Tate, Drabble, & Kirby 1994) is a domain-
independent HTN planner with the ability to encode ex-
tensive domain knowledge, including temporal constraints,
object/variable constraints, resource constraints, goal struc-
ture, and condition types. Plug-in constraint managers can
be used to extend or modify system capabilities. O-Plan’s
agenda mechanism provides flexible control of the planning
and execution process. Applications include space station
assembly and the control of a simple satellite.

In the following sections, we mention features of these
KB planning systems that are good candidates for extending
primitive-action planners, particularly disjunctive planning
techniques.

Expressiveness
It has been known for some time that HTN formalisms
are more expressive than the STRIPS formalism used by
most primitive-action planners, roughly analogous to the
additional expressivity of context-free grammars over right-
linear (regular) grammars (Erol, Hendler, & Nau 1994a).

In practice, the gap in expressiveness is very wide. In the
problems addressed by current KB planners, actions can oc-
cur concurrently and have different durations. Goals can in-
clude temporal deadlines and constraints, maintenance con-
ditions, and accumulation of metric quantities of some en-
tity. Goals and actions can be at multiple levels of abstrac-
tion. Metric resource constraints must be satisfied. All of
these aspects are problematic in the STRIPS formalism.

The KB approaches mentioned provide languages for
expressing the types of goals and constraints mentioned
above, making them suitable for complex domains. Fig-

ure 4 shows a hypothetical knowledge-based planning sys-
tem, illustrating the range of domain knowledge, inputs,
and outputs that may be required for planning in real-world
domains. General domain knowledge includes knowledge
about actions, tactics, and strategies, at multiple abstrac-
tion levels, as well as situation assessment information,
knowledge about resources, world knowledge, and so forth.
Problem-specific inputs for a particular planning session
may include goals and assumptions, constraints, additional
resources that may be brought to bear, and advice or guid-
ance from the user.

Encoding activities at multipleabstraction levelsis cru-
cial in many complex problems. The higher levels can
model various solution methods and constraints on the goal
and plan structure, which can be required by the domain
or desired for efficient search. The high-level goals in KB
planners may only be expressible in terms of primitive ac-
tions as disjunctions of thousand or millions of possible fi-
nal states (corresponding to all possible plans that achieve
the high-level goal). Multiple levels may be necessary for
user interaction or to support different planning interac-
tions for different levels of management. In time-critical
domains, multiple abstraction levels may be required to
quickly produce a plan within the available time. ASPEN,
Ozone, O-Plan, and SIPE–2 all support hierarchical de-
scriptions at multiple abstraction levels.

SIPE–2 operators candynamically generate a set of goals
at planning time, a capability that has been extensively
used. For example, a defend goal can be generated for every
currently known threat.

All the KB planners mentioned canreason about num-
bers, a capability that is crucial in nearly all their applica-
tions. For example, a planning variable may be constrained
to refer to a runway with length greater than 9,000 feet,
multiple-capacity resources have a specific capacity, and
continuous resources are available in limited quantities. In
many application domains, it is necessary toaccumulate a
certain quantityof some resource, or achieve a certain level
of effect, such as obtaining a sufficient length of boom to
surround an oil spill. Such goals are notaccomplished by
a single action; rather, several (often concurrent) actions
contribute to the accumulation. For example, SIPE–2 de-
termines when a set of actions (that individually produce
some amount of the resource in question) together achieve
an accumulation goal.

Temporal reasoningis important in nearly all complex
problems. All of the KB planners mentioned here have tem-
poral constraint reasoners. In the HTN planners, they are
plug-in modules that can be replaced by external temporal
reasoners. For example, SIPE–2 has two different modes
for reasoning about time. The most general allows specifi-
cation of any of the 13 “Allen relations” between any two
nodes. The temporal constraints are solved separately from
the other constraints by passing them to Tachyon (Arthur &
Stillman 1992).

Situation-dependent effectsof actions are deduced by a
causal theory in SIPE–2, but not supported by O-Plan. Such
effects have proven their use in practice—without them, the



number of operators can grow exponentially in complex do-
mains. As mentioned earlier, Smith and Weld have devel-
oped factored expansion to address this problem. Correct-
ing an error in previous publications, SIPE–2 does recal-
culate these deductions (and always has) when new actions
or ordering links are added to the plan before the action in
question.

Finally, calls can be made to “planning experts,” which
are specialized software modules, including legacy soft-
ware. RAX-PS uses such experts in the development of
plan fragments. In SIPE–2, functions on planning vari-
ables may compute an instantiation (e.g., the duration of a
flight), and procedural attachment on predicates may com-
pute whether a condition is true. These techniques allow
encoding of knowledge in arbitrary domain-specific LISP
code, for knowledge that cannot easily be modeled in the
planner’s formalism, and for sophisticated numerical cal-
culations.

Correctness
Erol, Handler, and Nau (1994b) gave a formal definition of
HTN planning, and also analyzed its complexity (1994a).
Since then, many HTN planners have been proven correct
and complete (for example, SHOP (Nauet al.1999)). Plan-
ning and execution in real-world domains generally cannot
be completely modeled. Although particular properties of a
system can be formally verified, system validation must of-
ten rely on empirical methods, which raises many challeng-
ing issues (Smith, Feather, & Muscettola 2000). Defining
evaluation criteria and correctness requirements for empir-
ical tests is another type of knowledge that must be speci-
fied.

User Interaction
In many real-world domains, plans and actions have far-
reaching effects, not all of which are modeled within the
planner’s formalism. For example, political consequences
of actions may be important in choosing a plan, but difficult
or impossible to model formally. Thus, it is often necessary
to have an interactive planner that allows a human expert to
guide plan development. In addition, experienced human
planners can guide the search effectively, and are often re-
luctant to give control to an automated system in any case.

Hierarchical knowledge like that used by KB planners of-
ten models the world in the same way that human users do,
using the same abstractions (generally provided by the hu-
man experts themselves). For example, in the air campaign
planning domain, higher-level goals include achieving air
superiority and breaching the enemy’s air defenses. Human
users use these same abstractions and ontology, so they can
naturally, for example, advise the system on how to breach
air defenses or drill down to see how the air defenses were
breached in an effort tounderstand the plan. This model-
ing approach enables users to control and understand the
planning process and the resulting plans. (Note, however,
that current HTN planners still leave much to be desired in
terms of interactive planning.) In contrast, disjunctive plan-
ning approaches model the planning problem as millions of

conjunctive normal form expressions, making it difficult for
users even to understand the planner’s reasoning process,
much less intervene to modify or guide it.

Because HTN plans and domain knowledge can be com-
plex, a powerful graphical user interface (GUI) is essential.
Without natural pictorial representations of the knowledge
and plans, it would be nearly impossible for a human to
understand them. ASPEN, Ozone, O-Plan, and SIPE–2 all
provide a GUI to aid in generating plans, viewing complex
plans, and following and controlling the planning process.
The GUI can also be used to view information relevant to
planning decisions.

SIPE–2 provides hyperlinked descriptions of plans and
plan objects in a web server. Particularly useful for visual-
izing the plan derivation and structure is the ability to view
a tree rooted at the most abstract goals and selectively drill
down through abstraction levels for selected goals (such as
breaching air defenses). When the plan contains thousands
of nodes, selective drill-down is often a user’s preferred
method for understanding it.

Several of the KB techniques mentioned provide flexible
and powerful interactive planners. For example, the user
may be able to interact with the planning process at many
levels of detail, and may direct the planner to solve certain
parts of the problem automatically. Under interactive con-
trol in SIPE–2, the user can determine (among other things)
when and how resources are allocated, which operators to
select, which goal to expand next, how to instantiate plan-
ning variables, and how to resolve conflicts (Wilkins 1999).
The user can also control or influence the plan develop-
ment process using the Advisable Planner (Myers 1996),
which allow users to direct the planning process by pro-
viding high-level guidance that influences the nature of the
solutions generated. Advice consists of task-specific prop-
erties of both the desired solution and the problem-solving
process to be used for a particular problem.

Constraints and Efficiency
It is sometimes argued that the knowledge used by HTN
planners is “simply search-control knowledge,” rather than
part of the problem statement. (We have argued above that
KB planners encode much more than just search-control
knowledge.) However, if the goal is to solve realistic plan-
ning problems, then intelligent, principled search control
that takes advantage of knowledge about the domain is pre-
cisely what is needed. This knowledge can often be nat-
urally and efficiently captured in HTN operators, where
much of the context is implicit and therefore need not be
expressed or checked during each attempted application.

Ozone, SIPE–2, and other systems represent invariant
object properties in a hierarchical ontology, which de-
scribes the classes to which an object belongs, and allows
for inheritance of properties. The ontology encodes a large
amount of knowledge, and the planner can reason more ef-
ficiently about this knowledge because it knows that the re-
lationships cannot change as actions are performed.

O-Plan and SIPE–2 have, for a long time, separated var-
ious classes of constraints for efficiency, for example, solv-



ing temporal constraints and constraints on static attributes
of objects separately. O-Plan pioneered the use of modular,
specialized constraint solvers used at certain intervals. This
separation of constraints is an example of an HTN idea that
has migrated to disjunctive planners in recent work showing
that performance of disjunctive planners can be improved
by separating out resource reasoning to prevent thrashing
(Srivastava & Kambhampati 1999).

How soon to make commitments in the search will de-
pend on the search strategy being used and problem being
solved. SIPE–2 and O-Plan have developed techniques to
exploit the least-commitment approach (Myers & Wilkins
1998; Tate, Drabble, & Kirby 1994; Wilkins 1990). For
example, in SIPE–2 constraints are placed on variables by
domain knowledge in the operators (e.g., a particular truck
must have a capacity greater than 100). Instantiations are
not chosen until sufficient constraints accumulate to iden-
tify a unique acceptable value. (Early instantiation might
result in a poor choice and failure to find a solution lead-
ing to a possible exploration of a large search space.) Be-
cause uninstantiated variables increase computational com-
plexity, domain-specific knowledge can be used to require
early instantiation of variables (by software “planning ex-
perts”) at particular points in the planning process. Hu-
man experts often know when certain instantiations can be
done without adversely affecting solution quality (Myers &
Wilkins 1998). Thus, this knowledge can improve perfor-
mance without sacrificing quality.

In some KB systems, predicates can be declared as func-
tional in certain arguments, allowing a dramatic speedup,
which has been documented experimentally (Myers &
Wilkins 1998). Functional predicates are of particular
importance to reasoning about locations in planning sys-
tems, and have proven valuable in nearly every applica-
tion of SIPE–2, as well as in procedural reasoning systems
(Georgeff & Ingrand 1989).

HTN systems often rely onplan criticsthat find conflicts
or flaws in a plan. Plan critics can be invoked after some
number of plan modifications rather than after every modi-
fication, thus reducing computational costs during plan ex-
pansion. Examples of plan critics include finding resource
conflicts, failed preconditions or unsatisfiable constraints.
In SIPE–2, domain knowledge can be used to increase or
decrease the frequency of plan critic application (Wilkins
1990).

Finally, Ozone, ASPEN, and O-Plan include specialized
resource classes. The system can efficiently implement spe-
cialized reasoners for these classes, instead of trying to rep-
resent, for example, multiple-capacity resources in the un-
derlying planning formalism.

Knowledge Beyond HTN
Despite the power of HTN planning systems, and their
demonstrated ability to address real-world planning prob-
lems, they have limitations that make them inadequate for
many problems of interest. In particular, HTN planners
• require complete (except for anticipated incompleteness)

and certain knowledge about the world

• model the effects of actions as deterministic, fully under-
stood outcomes

• assume that the planner controls all agents that cause
changes in the world state

• require significant effort in domain modeling and knowl-
edge acquisition for complex problems

• cannot perform or incorporate complex or decision-
theoretic evaluations of plan quality

• ignore the qualification problem

• use simplistic frame problem solutions that prevent draw-
ing the most appropriate conclusions when contradictory
(perceptual) information arrives (Pollock 1998)

• do not consider risks and utilities

• do not use knowledge and probabilities to handle uncer-
tainty

• are brittle (may not work if the problem changes
slightly).

These limitations are shared by primitive-action planners,
although some of them, such as handling uncertainty, are
the subject of ongoing research (Boutilier, Dean, & Hanks
1999; Onder & Pollack 1999; Majercik & Littman 1998;
Smith & Weld 1998; Weld, Anderson, & Smith 1998;
Kushmerick, Hanks, & Weld 1994).

In addition to these limitations, planning systems that
could solve interesting problems in a complex, dynamic
world will need capabilities that represent a fundamental
shift in how we think about planning problems. An ideal
system would be able to behave like humans do in these
sorts of environments; in particular, it would have to

• exhibit creativity, devising new actions that can solve a
problem or shorten a plan

• use analogy to transfer solutions from other problems

• effectively interact with humans to use their knowledge
in decisions

• behave intelligently in the face of conflicting or incom-
plete information.

We believe that these capabilities will require more knowl-
edge, including background knowledge of other domains
and of how the world works.

Erol, Handler, and Nau (1994b) showed that if a domain
is completely modeled, then an HTN planner can provide a
guarantee that the plans it produces are correct with respect
to this domain model. However, for realistic domains, eval-
uation criteria other than correctness and plan length will
have to be factored in explicitly. Interacting effectively with
humans will be essential because we will never model every
possible issue that might affect a planning decision. Hu-
mans often have evaluation criteria that cannot be captured
precisely, and have common-sense knowledge that allows
them to determine appropriate actions in unusual situations
that were unforeseen when the domain was modeled. Eval-
uating the plans that are produced should be evaluated in
the same way that plans produced by humans are evaluated:



for example, scoring performance against a simulator or the
real world, or having human experts evaluate the plans by
hand.

Of course, not all interesting problems have these char-
acteristics, and in any given case, it may be possible to for-
mulate the problem in such a way as to remove the need for
these capabilities. For example, in developing the Burton
planner, Williams and Nayak (1996) used a purely proposi-
tional representation. However, it seems unlikely that most
interesting problems will be amenable to such an approach,
and other NASA applications have required richer repre-
sentations (Chienet al.1996).

All types of systems mentioned above (including both
disjunctive planners and the KB planners mentioned) ig-
nore the qualification problem and have simplistic solu-
tions to the frame problem (Pollock 1998). These issues
must be addressed by future KB planners. Among other
problems with traditional planners, Pollock shows that new
perceptions that contradict old assumptions cause difficulty.
Pollock’s system handles these problems more robustly, al-
though it does not currently appear scalable to real-world
problems. Unsurprisingly, significantly more knowledge
must be encoded, such as knowledge about causation, de-
feasibility, and when causation can be “undercut”.

Lessons from Machine Learning
In every research community, there is an ongoing tension
between well-defined and more ambitious problems. On
the one hand, if a field focuses on small, well-understood
problems, with well-defined algorithmic properties and
evaluation metrics, then a set of benchmark problems can
be formulated to facilitate formal and empirical analysis
and comparison of competing methods. On the other hand,
many of the interesting challenges posed by realistic appli-
cations have broader implications and less well understood
properties, and the problems are more difficult to define
crisply and to evaluate.

Several years back, the machine learning community es-
tablished a repository of benchmark problems to evaluate
machine learning systems. Naturally, these problems all
had commonalities: most used an attribute-vector represen-
tation; most consisted of “sets of instances” with no back-
ground knowledge. In practice, they could be used only to
evaluate predictive accuracy on propositional, supervised
learning algorithms. Despite these limitations, however, it
became the de facto standard that papers submitted to the
International Conference on Machine Learning (ICML) had
to include an evaluation on these benchmark problems.

In some ways, these benchmarks, and the emphasis on
evaluation, were good for the community: they forced re-
searchers to think about metrics and about comparing their
systems to other systems, and they provided a baseline
of performance against which researchers could test new
ideas. On the other hand, they tended to stifle research
that did not fit neatly into the problem space defined by the
benchmark problems. Applications-orientedresearchers re-
ported that it was difficult or impossible to get their papers
accepted to the leading ML conferences (Provost & Kohavi

Adding Knowledge to Disjunctive Planners

Much of the effort of the planning community is currently
focused on improving the performance of disjunctive plan-
ners, which embody a form of primitive-action planning.
Kambhampati (1997) defines disjunctive planners as plan-
ners that retain the current “planset” without splitting its
components into different search branches. This family of
planners includes Graphplan (Blum & Furst 1995), SAT-
PLAN (Kautz & Selman 1996), and their derivatives. These
systems all use STRIPS-style planning knowledge to repre-
sent a planning problem, and then transform the problem
into a propositional form that can be solved using efficient
graph manipulation or constraint satisfaction techniques.

To impact realistic problems, we predict that disjunctive
planners will have to incorporate the types of knowledge
used by HTN planners, as well as knowledge to overcome
the limitations of HTN approaches that we have discussed.
It is encouraging that this knowledge incorporation is al-
ready starting to occur. For example, there is initial work on
adding knowledge about the temporal extent of actions to
SATPLAN encodings (Smith & Weld 1999), and on encod-
ing HTN method knowledge for satisfiability solvers (Mali
& Kambhampati 1998).

However, while HTN planners can generally make effec-
tive use of additional knowledge, the same is not necessar-
ily true of disjunctive planners. Additional knowledge en-
coded as axioms may increase the size of the problem with
redundant axioms, and make the problem harder to solve.
Initial experiments indicate that whether added knowledge
helps or hurts may depend on the particular combination
of knowledge, problem, and algorithm (Kautz & Selman
1998). For example, the “point of diminishing returns from
the addition of axioms would be sooner reached for stochas-
tic search than for systematic search” (Kautz & Selman
1998). Thus, the knowledge added to a disjunctive plan-
ner may have to be carefully chosen for the problem being
solved and the algorithm being used.

KB approaches are rightly criticized for the expense of
modeling a new domain. However, we conjecture that
building computationally efficient encodings for disjunc-
tive planners of complex planning domains is no easier than
building HTN models. Many encoding issues are still un-
der study, even for toy domains (Kautz & Selman 1999;
Brafman 1999; Mali & Kambhampati 1998). disjunctive
planners often start with STRIPS-based encodings, further
restricting the types of actions that can be encoded, and
causing a possible exponential explosion in the number of
operators when context-dependent effects are not permit-
ted.



1998). Meanwhile, more and more papers appeared show-
ing minor tweaks and incremental improvements to exist-
ing algorithms (but they showed “statistically significant”
improvements on the benchmark algorithms!).

As a result, there are now many well-understood and ef-
fective methods for propositional supervised learning—and
there has been much less progress in other areas of ma-
chine learning, such as incorporating background knowl-
edge, feature engineering, relational learning, interactive
learning techniques, visualization of learned knowledge,
and complex evaluation criteria.

Most recently, there has been an explosion of interest
in learning Bayesian networks. Bayesian network learn-
ing and inference techniques have appealing computational
properties that are analogous to those of DP approaches:
they efficiently capture certain types of problem structure,
and significantly speed up certain types of inference over
previous methods. However, like disjunctive planning ap-
proaches, they use a propositional representation, and do
not address many of the other challenges posed by real-
istic learning problems. As with disjunctive planning ap-
proaches, the rush of enthusiasm over Bayesian network
techniques has threatened to overshadow the fact that de-
spite their computationally attractive properties, they still
solve only a small subproblem within the overall field of
machine learning.

Similarly, in the planning community, there is a dan-
ger that by focusing too much attention and effort on dis-
junctive planning methods and the problems they solve, we
risk losing the ability to recognize other kinds of contri-
butions and advances. In particular, if the benchmark of
performance becomes solely how many blocks our plan-
ners can stack, and how fast they can do it, then it will be-
come increasingly difficult to recognize and learn from re-
search that performs well along other dimensions—or that
addresses problems that disjunctive planners overlook com-
pletely. As we discussed earlier, dijunctive planning re-
searchers within the planning community are starting to
look toward extending their systems to incorporate richer
forms of knowledge. This is a trend that we applaud, and
that we hope will continue, but it is not enough to sim-
ply broaden the uses of disjunctive planning systems: we
need to be open to completely different approaches and
paradigms as well.

While improving the speed of solving problems we know
how to formulate precisely is a valuable research activity,
so is continuing to investigate problems that we do not yet
have a good handle on formulating or solving. Results may
be more difficult to achieve or quantify for the latter prob-
lems, but that does not mean we should not be working on
them.

Conclusion
Ginsberg (1996) has pointed out that the SATPLAN ap-
proach is successful because it solves the “puzzle” part of
a problem, and overlooks any commonsense reasoning as-
pects of the true problem. In Ginsberg’s view, common-
sense reasoning is the heuristic process by which we re-

duce extremely complex problems to NP-hard or simpler
problems for which search is feasible. Which aspects of a
problem to pay attention to, frame and context assumptions,
and default strategies for organizing complex activities are
all aspects of commonsense reasoning. As Ginsberg puts it
(p.624), “It is Kautz and Selman who are solving the com-
monsense aspects of the problem; their ‘planner’ is solv-
ing the puzzle-mode kernel of the problem instead of the
problem itself.” Indeed, the problems solved by primitive-
action approaches are almost exclusively puzzle-style prob-
lems (or “real-world” problems that have been reformulated
as puzzles).

We favor using primitive-action methods to solve puzzle-
style subproblems that can be handled by constraint satis-
faction engines in acceptable time. However, AI planners
also need to provide support for the commonsense reason-
ing aspects of the problem so that plans can be used to guide
behavior while embedded in a complex, dynamic environ-
ment. We have argued that incorporating knowledge, en-
coded in understandable structures, into the planning pro-
cess is the most promising way to provide these abilities.
HTN planning methods are better suited than disjunctive
planners for such problems because HTN systems can in-
teract with humans effectively, use more expressive repre-
sentations, and can make use of domain knowledge to scale
up to complex problems. However, HTN methods still have
significant limitations, and we have argued that one must
use still more knowledge (both in quantity and in quality)
than HTN planners do in order to solve the hardest prob-
lems.

Although primitive-action methods are clearly useful ap-
proaches for solving certain subproblems, it is important
for the field as a whole to continue to look at a wider range
of problems. There is a danger of allowing the current
popularity of disjunctive planning approaches, and the as-
sociated evaluation techniques and “puzzle-style” problem
suite, to overly influence the field, making it more difficult
for advanced KB planning methods to find an audience.
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Figure 2: The space shuttle Discovery lands at Kennedy Space Center after successfully completing mission STS-85.Photo
by National Aeronautics and Space Administration (taken by Bionetics). Used with permission.



Figure 3: The CHASER module of the DATA-CHASER planning and scheduling system that flew aboard the space shuttle
Discovery in August 1997.Photo by National Aeronautics and Space Administration. Used with permission.
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Figure 4: Potential sources of knowledge and modes of interaction for a hypothetical knowledge-based planning system.


